Structure of glucoamylase from Saccharomycopsis fibuligera at 1.7 A resolution.

نویسندگان

  • J Sevcík
  • A Solovicová
  • E Hostinová
  • J Gasperík
  • K S Wilson
  • Z Dauter
چکیده

The yeast Saccharomycopsis fibuligera produces a glucoamylase which belongs to sequence family 15 of glycosyl hydrolases. The structure of the non-glycosyl-ated recombinant enzyme has been determined by molecular replacement and refined against 1.7 A resolution synchrotron data to an R factor of 14.6%. This is the first report of the three-dimensional structure of a yeast family 15 glucoamylase. The refinement from the initial molecular-replacement model was not straightforward. It involved the use of an unrestrained automated refinement procedure (uARP) in combination with the maximum-likelihood refinement program REFMAC. The enzyme consists of 492 amino-acid residues and has 14 alpha-helices, 12 of which form an (alpha/alpha)6 barrel. It contains a single catalytic domain but no starch-binding domain. The fold of the molecule and the active site are compared to the known structure of the catalytic domain of a fungal family 15 glucoamylase and are shown to be closely similar. The active- and specificity-site residues are especially highly conserved. The model of the acarbose inhibitor from the analysis of the fungal enzyme fits tightly into the present structure. The active-site topology is a pocket and hydrolysis proceeds with inversion of the configuration at the anomeric carbon. The enzyme acts as an exo-glycosyl hydrolase. There is a Tris [2-amino-2-(hydroxymethyl)-1,3-propanediol] molecule acting as an inhibitor in the active-site pocket.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure of the complex of a yeast glucoamylase with acarbose reveals the presence of a raw starch binding site on the catalytic domain.

Most glucoamylases (alpha-1,4-D-glucan glucohydrolase, EC 3.2.1.3) have structures consisting of both a catalytic and a starch binding domain. The structure of a glucoamylase from Saccharomycopsis fibuligera HUT 7212 (Glu), determined a few years ago, consists of a single catalytic domain. The structure of this enzyme with the resolution extended to 1.1 A and that of the enzyme-acarbose complex...

متن کامل

Glucoamylase: structure/function relationships, and protein engineering.

Glucoamylases are inverting exo-acting starch hydrolases releasing beta-glucose from the non-reducing ends of starch and related substrates. The majority of glucoamylases are multidomain enzymes consisting of a catalytic domain connected to a starch-binding domain by an O-glycosylated linker region. Three-dimensional structures have been determined of free and inhibitor complexed glucoamylases ...

متن کامل

The phylogeny of species of the genus Saccharomycopsis Schiönning (Saccharomycetaceae) based on the partial sequences of 18S and 26S ribosomal RNAs.

Eight strains of Saccharomycopsis species were examined for their partial base sequences of 18S and 26S rRNAs. The base sequences on the fingerprint segment showed three kinds of ACUAU, UCUAU, and AUAU. In the partial base sequences (positions 1451-1618, 168 bases) of 18S rRNA, all the strains of Saccharomycopsis species examined had 1-0 base difference except for the strains of Saccharomycopsi...

متن کامل

Purification and characterization of the cell-wall-associated and extracellular alpha-glucosidases from Saccharomycopsis fibuligera.

Cell-wall-associated and extracellular alpha-glucosidases were purified to homogeneity from Saccharomycopsis fibuligera KZ growing on a medium containing cellobiose as the sole source of carbon; this substrate has the greatest inducing effect on the production of both forms of the enzyme. Depending on the source of carbon, 75-90% of the enzyme is associated with cell wall, from which it can be ...

متن کامل

Whole-genome de novo sequencing, combined with RNA-Seq analysis, reveals unique genome and physiological features of the amylolytic yeast Saccharomycopsis fibuligera and its interspecies hybrid

BACKGROUND Genomic studies on fungal species with hydrolytic activity have gained increased attention due to their great biotechnological potential for biomass-based biofuel production. The amylolytic yeast Saccharomycopsis fibuligera has served as a good source of enzymes and genes involved in saccharification. Despite its long history of use in food fermentation and bioethanol production, ver...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta crystallographica. Section D, Biological crystallography

دوره 54 Pt 5  شماره 

صفحات  -

تاریخ انتشار 1998